

Communication Specification System UART

Doc Status: Released
Doc version: 2.0
Date: November 2018

neo.cortec.

 - 2 of 13 –

Table of Contents
1 INTRODUCTION ... 3
2 COMMUNICATION PROCEDURE ... 3
3 COMMUNICATION SPECIFICATION – SYSTEM UART ... 3

3.1 LOGICAL DATA EXCHANGE .. 3
3.2 COMMANDS AND SYSTEM RESPONSES .. 4

3.2.1 List of system commands: ... 4
3.2.2 List of system responses: .. 5

4 EXAMPLES ... 7
4.1 START BOOTLOADER .. 7
4.2 START PROTOCOL STACK .. 7
4.3 LOGIN ... 7
4.4 RESET LIST ITERATOR ... 7
4.5 GET LIST .. 7
4.6 GET SETTING FLASH: ... 8
4.7 GET SETTING RAM: .. 8
4.8 COMMIT SETTINGS: ... 8
4.9 DISCARD SETTINGS: .. 8
4.10 SET SETTING: .. 8
	

 - 3 of 13 –

1 Introduction
This document is in addition to the Integration Manual for NCxxxx Series Modules
document. This documents provides more detail on how to configure settings in the
NeoCortec NeoMesh modules through the System API port. In addition it provides
instructions for how to upload new firmware in the modules from an embedded
controller.
Please refer to the Integration Manual for NCxxxx Series Modules document for details
on how to connect to the System UART.

2 Communication procedure
During normal operation of the NeoMesh module the protocol stack is running and the
System UART is used solely for outputting trace messages. If one wishes to modify
settings in the module, the communication protocol stack first need to be stopped, and
the module need to be put into bootloader mode.
Once in bootloader mode, the module will accept commands on the System UART.

To start modifying settings, login with a password is required. Only settings which are
permitted by a certain password level can be read or written.

When the Bootloader is enabled, a copy of the settings is stored in the RAM of the
module. In the RAM block it is possible to modify settings. Once the settings are
modified, they can be written back to flash.

It is possible to read a setting either from the RAM copy or from the flash memory with
the Get Setting RAM or the Get Setting Flash commands.

3 Communication Specification – System UART
3.1 Logical data exchange
Data is exchanged over the interface in Big Endian byte order.

The general format of a data frame is:

Section Header Length Cmd1 Cmd2 Data Trail
Length 1 byte 1 byte 1byte 1byte n 1byte

Header: Shall always be 0x3E when sending data to the module. When the module
sends data to the host controller it will mimic the Header from the send frame.

Length: The length of the frame after the Length field.

 - 4 of 13 –

Cmd1: Identifies the destination for the command – currently only bootloader will
accept messages, and the Cmd value for bootloader is 0x01.

Cmd2: The actual System command or System Response.

Data: Optional field for arguments.

Trail: Shall always be 0x21.

3.2 Commands and System responses
There are two types of frames exchanged, Commands and System Responses:

Commands are frames accepted by the NeoMesh module.

System responses is messages sent from the NeoMesh module in response to a
previously issued Command.

3.2.1 List of system commands:
Command
name

Cmd1 Cmd2 Data Description

Login 0x01 0x03 5 Byte
password

Login shall be performed prior to reading or
writing settings to the module.

Reset List Iterator 0x01 0x04 non Resets the settings list iteration pointer to the
beginning of the settings list. Should always be
called first prior to reading the Settings List.

Get List 0x01 0x05 non Outputs up to 10 elements of the settings list.
Can be called multiple times to iterate through
the settings list.

Get Setting Flash 0x01 0x06 1 byte id Reads a particular setting from the Flash memory

Get Setting RAM 0x01 0x07 1 byte id Reads a particular setting from the RAM memory

Commit Settings 0x01 0x08 non Writes the settings currently stored in RAM to
Flash

Discard Settings 0x01 0x09 non Reloads settings from Flash into RAM

Set Setting 0x01 0x0A x bytes
setting
value

Modifies a particular setting value in RAM. See
format below.

Start Protocol
Stack

0x01 0x12 non Exit Bootloader and start the protocol stack.

Start Bootloader 0x01 0x13 non Stop protocol stack and start Bootloader.

 - 5 of 13 –

Note: The only System Command which can be executed when the bootloader is not
started, is the Start Bootloader (Cmd2 = 0x13). All other commands will be silently
discarded.

3.2.1.1 Setting Value format
When modifying a setting (using Set Setting command), the setting is given by this
format:

ID Data
The id of the setting
which is being modified

The new setting value
given in x bytes.

3.2.2 List of system responses:
Response name Cmd1 Cmd2 Data Description

Login_Ok 0x03 0x80 non Indicated that the previously send login
command was successful

Login_Error 0x03 0x81 non Indicates that the previously send login
command was not successful – bad
password. Will also be send if a setting is
being read or written to which the password
level currently entered does not give access
to.

Boot_Loader_Started 0x03 0x82 non Response to a successful Start Bootloader
command

Protocol_Stack_Started 0x03 0x83 non Response to a successful Start Protocol Stack
command

Protocol_Stack_Error 0x03 0x84 non Response to a Start Protocol Stack command
when the FW in module is faulty.

Settings_List_Output 0x01 0x85 Settings
list

Response to a Get List command. See
detailed format of data below.

Setting_Value_Flash 0x01 0x86 Setting
Value

Response to a Get Setting Flash command.
The Setting Value will be the raw setting
bytes.

Setting_Value_RAM 0x01 0x86 Setting
Value

Response to a Get Setting RAM command.
The Setting Value will be the raw setting
bytes.

 - 6 of 13 –

3.2.2.1 Settings list format
The Settings_List_Output sends the Settings List in the following format.

Each element is 3 bytes long. Each element contains the following information:

Byte# 0 1 2
Value Setting Id Setting Value Length Access right:

3 Read/Write
2 Read

To read the complete list of settings, repeat the get list command until either a non-full
list (less than 10 elements) or an empty list is returned.

3.2.2.2 Setting Value format
The Setting_Value_Flash or Setting_Value_RAM sends the setting value in the following
as the raw settings bytes. No header is included.

 - 7 of 13 –

4 Examples

4.1 Start Bootloader
Command 3E 03 01 13 21
Response 3E 03 03 82 21

4.2 Start Protocol Stack
Command 3E 03 01 12 21
Response Ok: 3E 03 03 83 21

Error: 3E 03 03 80 21

4.3 Login
Command 3E 08 01 03 4C 76 6C 31 30 21
Response Ok: 3E 03 03 80 21

Error: 3E 03 03 81 21

Bytes marked in Green text above, is the password. In this case the bytes corresponding
to password Lvl10.

4.4 Reset List Iterator
Command 3E 03 01 04 21
Response 3E 03 03 80 21

4.5 Get list
Command 3E 03 01 05 21
Response 3E 21 01 85 00 05 03 04 05 03 05

05 03 06 05 03 07 05 03 0A 02 03
0F 01 03 10 06 03 11 03 03 12 03
03 21

Bytes marked in Green text above, is the settings list.
In the example above, there are 10 settings identified. Next time Get List is called, then
next 10 settings will be transmitted.

 - 8 of 13 –

4.6 Get Setting flash:
Command 3E 04 01 06 0A 21
Response 3E 05 01 86 00 03 21

In this example, settings Id 0x10 is being read which is the Node Id. The response is the
actual Node Id of the module (0x00 0x03).

4.7 Get Setting RAM:
Command 3E 04 01 07 0A 21
Response 3E 05 01 87 00 03 21

This is the same as for Flash, but read form the RAM copy. So when settings are
modified it is possible to read back the new RAM value or the old Flash value, before
committing the new settings.

4.8 Commit settings:
Command 3E 03 01 08 21
Response 3E 03 03 80 21

4.9 Discard settings:
Command 3E 03 01 09 21
Response 3E 03 03 80 21

It will reload the ram copy of settings from flash, there by efficiently discards any
changes.

4.10 Set Setting:
Command 3E 06 01 0A 0A 00 04 21
Response 3E 03 03 80 21

The example above sets the Node Id to 0x00 0x04.

 - 9 of 13 –

5 Flash module firmware

5.1 Introduction
This sections describes the required steps to upload new firmware to the module from
an external controller. It is considered an advanced topic, and is not the recommended
module firmware flash procedure.

CAUTION: When updating the firmware, there is a risk that the module can be
permanently damaged. It is recommended to use the tools provided by NeoCortec
when updating the firmware, and only in special situations should it be necessary to
update the firmware from an embedded controller.

5.2 “neo” file format
The firmware for NeoMesh modules is distributed in a binary file which contains the
actual firmware as well as relevant meta data for the particular firmware. The firmware is
divided into two parts: A bootloader and the protocol stack. Each part is encrypted, and
will be decrypted by the NCxxxx module once it has been uploaded.

For firmware updates, NeoCortec use two different file formats:

1. xxxxx.neo
2. xxxxx.combined.neo

As an example, the file could be named like this:

 1159_NC2400 .combined.neo

Where:

• 1159 is the build number of the image(s)
• NC2400 indicates which module the FW is intended for

The first file contains a single part – usually only the protocol stack. The second file
contains multiple parts – usually the bootloader and the protocol stack. Normally the
second file type shall be used, and both the bootloader and the protocol stack shall be
updated at the same time.

 - 10 of 13 –

The two file types use the same format:

Byte Example (Hex) Description
0 10 Layout format (this)
1-2 0037 Offset to image start (from layout format) Big-

Endian
3-4 0800 Start address of the image (when writing to the

NCxxxx module)
5-20 78 6A 10 B6 2F 97 4D B4

8D 2F 3F EE 38 54 3C 56
AES128 – Init Vector.

21-
22

1010 Length of image

23-
24

0483 Build number

25-
44

70 69 63 c0 3d 37 37 63
d2 f8 9d af 65 51 63 49 8c
4c d2 4f

Internal reference – ignore.

45 08 Length of Image name
46-
54

6E 65 6F 2E 63 6F 72 65 00 Null terminated Image name

55-
4167

Image Data The actual FW (encrypted)

4168 10 Start of next image (layout format)
Please note that the Byte column in the table above is only true for this example. If the
length of the image or the length of the image name is different, then the indexes will
also be different.

5.3 Uploading new firmware to the NCxxxx module

To upload the image the following steps are needed:

1. Start Bootloader
2. Send AES128 Init Vector
3. Erase Flash
4. Upload image
5. Check image
6. Restart image
7. Jump to step 1 if more than one part is being updated

 - 11 of 13 –

Please note that when the file “combined.neo” is being used, it is important to adhere to
the order in which the parts are arranged in the file. It is further necessary to perform
step 6 even if more parts are being uploaded.

The following sections of the document lists all the commands necessary to complete
the steps above.

 - 12 of 13 –

5.3.1 List of system commands for uploading firmware
Command
name

Cmd1 Cmd2 Data Description

Start Bootloader 0x01 0x13 non Stop protocol stack and start
Bootloader.

Module will respond “Bootloader
Started” if successful.

Set Init_Vector 0x01 0x01 16 bytes Sets the AES128 Init Vector which
is needed by the module to
decrypt the firmware.

Module will respond “OK” if
successful.

Erase flash 0x01 0x00 non Erases the entire flash memory.

Module will respond “OK” if
successful.

Upload Image 0x01 0x02 Address/2 (2 byte)

“N” Number of blocks (1
byte)

Image data (N * 16 bytes)

The firmware shall be written in
blocks of 16 bytes. The address
shall be the start address of the
first block divided by 2. Each
upload can be maximum 11
blocks of 16 bytes.

The firmware is always larger than
11 blocks, and command must be
used multiple times. Remember to
move the address reference at
each call.

Module will respond “OK” if
successful.

Check Image 0x01 0x19 Non Perform CRC check on protocol
stack image.

Module will respond “OK” if
successful.

Start Protocol
Stack

0x01 0x12 Non Exit bootloader and start the
protocol.

Module will respond:

 “Pre Image Start Delay”

 <1 sec delay>

 “Protocol Stack Started”

If successful.

 - 13 of 13 –

5.3.2 List of system responses

Response name Cmd1 Cmd2 Data Description

OK 0x03 0x80 Non OK response from the last issued command
if successful.

Error 0x03 0x81 Non Indicates the last issued command
completed with an error.

Bootloader Started 0x03 0x82 Non Indicates that the command “Start
Bootloader” was successful.

Protocol Stack Started 0x03 0x83 Non Indicates that the command “Start Protocol
Stack” was successful.

Pre Image Start Delay 0x03 0x85 Non 1 second delay before starting Protocol
Stack to allow cancelling Protocol Stack
Start.

