neo.cortec

User Guide for NeoGateway

Doc Status: Release
Doc version: 1.3
Date: June 2020

neo.cortec

Table of Contents

NOoO O, WN -

8
9
10

DOCUMENE FEVISIONS ... 4
] (oo [To3 1T o [PPSR 4
ADDIreviations ... 4
DY 1] 114 < PP 4
NeoGateway TeChNICal OVEIVIEWuuiiiiiiiiiiiiiiiieee e 5
Hardware iNtegration ... 6
Using the gateway SOftWare ... 6
7.1 PrEr@QUISITES. . .ciiiiii s 6
7.2 Getting the SOfWAre ... 6
7.3 Building the SOftWareccooiiiiii e 6
7.4 RUNNING the SOTtWAIre c..c.ociiiiiicc e 7
7.4.1 Configuration Parameters ...t 7
7.5 Inbound IP Socket commuNIiCatioNcccooiiiiiiiiiiceeee e 9
7.5.1 Send unacknowledged payload data to a node in the network 9
7.5.2 Send acknowledged payload data to a node in the network............cc.cc........ 9
7.5.3 Send a Node Info Request to the Gateway nodecceeveveinininciincnnn 10
7.5.4 Send Neighbor List Request to the Gateway nodecccccecvrinincccncnnnn. 10
7.5.5 Send Network Command to the Gateway Nnodeccccocevveieininincincncnnn 10
7.5.6 Send WES command to the Gateway Nodeccccoevviriniicinincncccce 11
7.5.7 Send WES Setup Response to an unconfigured nodeccocveveinrnennene. 11
7.5.8 Send ALT Command to the Gateway Node........cceovevviriniiciininicece 11
7.6 Outbound IP Socket commMuUNICAtioNcceiiiiiieiieieieeeeee e 12
7.6.1 Acknowledge for previously send dataccccoeeveiiiiininiiie 12
7.6.2 Non-Acknowledge for previously send data........ccccccvveriniiinininccncn 12
7.6.3 Unacknowledged Payload Data Receivedccccoeiviiiniicininiccce 13
7.6.4 Acknowledged Payload Data Received.........ccocoviiiiiiiniiiniiicecc 14
7.6.5 NOde INfO REPIY c.eoiiiiiiiee e 15
7.6.6 NEIGhDOUN ISt e 15
7.6.7 Network Command Reply ..ot 16
7.6.8 WES STATUS ..ottt ettt 16
7.6.9 WES Setup REQUEST ..ot 16
Interfacing the NeoGateway with the Application Layercccooviiiiiiiiii. 18
TS0 PO 18
Raspberry Piintegration ... 20
10.1 Hardware interface board. ... 21
10.2 Setup steps for the different solutions........ccoeieiiiiiiciiee 21
10.3 Preparation of Raspberry Pi for the Hardware interface board.........ccccocceee. 21
10.3.1 Disabling Serial Console.......coccoiiiiiiiiiic e 23
10.3.2 Disabling the Bluetooth serial interface.......c.ccoecveniiininiiicee, 23

10.4 Running the installer script for the gateway software.......c.ccoccoeoeinincncincnenes 25

neo.cortec

10.5 Installing the NeoGateway software manually........c.ccccoiiiininiiiininiiis 27
10.6 Testing connection to NeoCortec modulecceiiiiiiiiiininiiccccen 28
10.7 Interface Application DEMOccoiiiiiiiiiieec e 32
10.7.1 Setting Up POWer Bl ...t 32
10.7.1.1 Create streaming datasetcccoueiririiiiiineeeeeee e 33
10.7.1.2 Create Power Bl Dashboard.........ccocooiiiiiiiinicce, 35
10.7.2 NOAE-REA COUE ..ottt 35
10.7.2.T7 NeOGAtEWAY ..ccviiiiiiieiieit et 36
10.7.2.2 Create JSON ODJECT ..o 36
10.7.2.3 Check ObjJeCtTYPE .ot 37
10.7.2.4 Fetch Sensor Data.....c.ccciiiriicieiieeeeee e 38
10.7.2.5 Timestamp & FOrmat.......ocoiiiiiiniiiccce e 39
10.7.2.6 Send t0 POWET Bl....iiiiciiiiiieeeee e 39

neo.cortec

1 Document revisions

Document version Details

1.0 Initial release

1.1 Fixed typo in path to home directory in section 10.3

1.2 Unacknowledged messages have been introduced together
with some other unimplemented messages, and the document
has been through a general review and update.

1.3 Overhaul of the installation steps and adding an extra control
section for checking the correctness of the installation. Config
files introduced.

2 Introduction

This document describes how to use the NeoGateway to interface the NeoMesh ultra
low power wireless mesh network to an IP network.

3 Abbreviations

e HW -Hardware
e SW - Software

e UART - Universal Asynchronous Receiver/Transmitter

e RX-Receive

e TX-Transmit

e |P-Internet Protocol

e AAPI - Application APl for the NeoCortec NeoMesh modules
e SAPI - System API for the NeoCortec NeoMesh modules

e JSON - JavaScript Object Notation

4 Definitions
(None)

-4 of 39 -

Nneo.cortec

5 NeoGateway Technical overview

The NeoGateway is provided as Open Source software designed to work on the
Raspberry Pi platform. The software will however operate without problems on most
Linux systems. The NeoGateway is based on the NeoMesh API, and is structured

according to the figure below:

Inbound QOutbound
IP Socket IP Socket

Y 1

JSON Parser

L]

NeoMesh API

Serial Port Glue Layer

The architecture is such that payload data being send from a node inside the NeoMesh
network to the gateway node will be delivered on the Outbound IP Socket in JSON
format. Similarly, payload data being send from the IP network shall be send as a JSON
formatted package to the inbound IP Socket.

This allows for a very versatile gateway design which can easily be adapted to interface
with both Cloud services as well as local or remote proprietary servers.

-50f39 -

neo.cortec

6 Hardware integration

The NeoGateway is designed such that only limited hardware resources are required. The
software is designed for the Linux OS, but can run on most embedded platforms with
little adjustments required.

The minimum requirements for the hardware platform is to have a UART port and at least
one GPIO (for CTS signal), alternatively a full serial port including CTS signalling.
Additionally, an Ethernet interface or WLAN interface is required to connect to an IP
Network.

For additional information on how to connect the NeoMesh modules to the Gateway
hardware, please refer to the NeoCortec Integration Manual for NCxxxx Series Modules.

7 Using the gateway software

7.1 Prerequisites

In the following sections, it is assumed that the NeoGateway software is being used on a
Linux platform. Similarly, it is assumed that the Linux installation is setup with an up-to-
date GNU Compiler (GCC) and “Make” build automation tool.

7.2 Getting the software

The NeoGateway software can be downloaded from www.neocortec.com
The download package contains the full source code. We recommend downloading the

package to a local directory dedicated to building the gateway software.
7.3 Building the software

Note: If you intend to use the software on a Raspberry Pi platform, you DO NOT
need to build the gateway software. The package you downloaded contains a
prebuilt Raspberry Pi version.

To build the NeoGateway software, simply navigate to this folder:
/src/NeoCortecGateway/Release

In this folder, build the software by entering ‘'make’ and hit enter. This will create an
executable file named NeoCortecGateway.

-6 0f 39 -

7.4 Running the software

The NeoGateway software is executed from the terminal, and has a number of command
line parameters which affect the configuration of the gateway. The syntax is as follows:

NeoCortecGateway [-c config-file]

neo.cortec

NeoCortecGateway [-C keyl=valuel[, keyN=valueN...]]

where “config-file” is a text file which can contain the parameters.

If no parameters are given, the default values will be used. Note that uppercase /

lowercase is important.

7.4.1 Configuration parameters

Parameter Explanation Possible values
uart Specifies which serial interface | Any valid reference to a serial
to use interface
[Default = /dev/ttyAMAOQ]
speed Specifies the baud rate on the B57600
serial interface. B115200 (Default)
NOTE: Only B115200 is B230400
supported
ctsSource Specifies where the CTS signal | ioctl - uses the CTS pin from a
from the NCxxxx module is serial interface which supports
connected hardware flow control
gpio - uses a GPIO pin when the
serial interface does not support
hardware flow control
gpioPin In case of using GPIO to Any valid GPIO pin number
interface the CTS signal, this
parameter specifies which Pin is
used
delimiter Specifies what delimiter is being | \n (default)
used for terminating messages
on the Outbound IP Socket
serializer Specifies the format used on the | JSSON (default)
Inbound and Outbound IP xml
Sockets
NOTE: Only JSON supported
recvPort Specifies the port number of the | Any valid port number
Inbound IP Socket [Default = 2000]
sendPort Specifies the port number of the | Any valid port number
Outbound IP Socket [Default = 2001]

-7 of 39 -

Nneo.cortec

ctsTimeoutSecs

Specifies the timeout period for
the module to accept the
message.

Shall be adjusted according to
the scheduled data rate of the
network

[Default = 5]

-8 of 39 -

neo.cortec

7.5 Inbound IP Socket communication

In the following section each command accepted by the NeoGateway on the inbound IP
Socket is described.

7.5.1 Send unacknowledged payload data to a node in the network

{"objectType":"sendPayload",

"payloadType" : "unacknowledged",

"nodeId":16,

"port":0,

"sequenceNo":564,
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:

objectType is specifying the JSON object type.

payloadType specifies that the payload shall be sent “unacknowledged”.

nodeld is the Node Id of the destination node as decimal (0x0010 in the example
above).

port is the port on the destination node

sequenceNo is an Application sequence number.

payload is the actual payload data to send, with each byte as decimal in an array

7.5.2 Send acknowledged payload data to a node in the network

{"objectType":"sendPayload",

"payloadType" : "acknowledged",

"nodeId":16,

"port":0,
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:

objectType is specifying the JSON object type.

payloadType specifies that the payload shall be sent “acknowledged”.

nodeld is the Node Id of the destination node as decimal (0x0010 in the example
above).

port is the port on the destination node

payload is the actual payload data to send, with each byte as decimal in an array

-9 0of 39 -

neo.cortec

7.5.3 Send a Node Info Request to the Gateway node
{"objectType":"nodeInfoRequest"}

where:
objectType is specifying the JSON object type.

7.5.4 Send Neighbor List Request to the Gateway node
{"objectType" : "neighborListRequest" }

where:
objectType is specifying the JSON object type.

7.5.5 Send Network Command to the Gateway node

{"objectType": "networkCommand",

"nodeId":16,

"emd":0,
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:
objectType is specifying the JSON object type.
nodeld is the Node Id of the destination node as decimal (0x0010 in the example
above).
cmd is the actual network command.
payload is the actual payload data to send, with each byte as decimal in an array

-10 of 39 -

neo.cortec

7.5.6 Send WES command to the Gateway node

{"objectType":"wesCmd",
"cmd":0}

where:
objectType is specifying the JSON object type.
cmd is the actual WES command. See Integration Manual for NCxxxx Series
Modules for details.

7.5.7 Send WES Setup Response to an unconfigured node

{"objectType":"wesResponse",
"nodeId":16,
"uidHex":"ffffffffff",

"appSettings":"0102030405060708090a0b0c0d0e0£101112131415161718
"}

where:
objectType is specifying the JSON object type.
nodeld is specifying the Node ID which the node being set up will get.
uidHex is the UID of the node which will be set up
appSettings is the 24 bytes long Generic Application settings used in Normal
Mode which will be send to the node being setup.

7.5.8 Send ALT Command to the Gateway node

{"objectType":"altCmd",
"cmd":0}

where:

objectType is specifying the JSON object type.
cmd is the actual ALT command.

- 11 0of 39 -

neo.cortec

7.6 Outbound IP Socket communication

When the NeoGateway is running, all AAPI messages transmitted by the NCxxxx module
in the gateway are send to the outbound IP socket. Each type is described in the following
sections.

7.6.1 Acknowledge for previously send data

{"objectType":"ack",
"gwTimestamp":"2016-11-09T16:00:00.0002",
"nodeId":32}

where:
objectType is specifying the JSON object type.
gwTimestamp is the time of arrival at the NeoGateway encoded in ISO8601
format.
nodeld is the Node ID of the node sending the Acknowledge.

7.6.2 Non-Acknowledge for previously send data

{"objectType": "nack",
"gwTimestamp":"2016-11-09T16:00:00.0002",
"nodeId":32}

where:

objectType is specifying the JSON object type.

gwTimestamp is the time of arrival at the NeoGateway encoded in ISO8601
format.

nodeld is the Node ID of the node sending the Non-Acknowledge.

-12 of 39 -

neo.cortec

7.6.3 Unacknowledged Payload Data Received

{"objectType":"receivedPayload",
"gwTimestamp":"2016-11-09T16:00:00.000Z2",
"payloadType" : "unacknowledged",

"sequenceNo” :564,

"nodeId":32,

"port":0,

"packageAgeMicroSecs":750000,

"packageAgeType": "normal",
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:

objectType is specifying the JSON object type.

gwTimestamp is the time of arrival at the NeoGateway for the payload encoded in
ISO8601 format.

payloadType is the message type.
sequenceNo is an Application sequence number.

nodeld is the Node ID of the node sending the data

port is the port to which the data was send

packageAgeMicroSecs is the package age of the payload data in micro seconds
packageAgeType is either "normal” or "hapa”.

See "NeoCortec User Guide” document for more details on HAPA vs Normal.
payload is the actual payload data received, with each byte as decimal in an array

-13 of 39 -

neo.cortec

7.6.4 Acknowledged Payload Data Received

{"objectType":"receivedPayload",
"gwTimestamp":"2016-11-09T16:00:00.000Z2",
"payloadType" : "acknowledged",

"nodeId":32,

"port":0,

"packageAgeMicroSecs":750000,

"packageAgeType": "normal",
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:

objectType is specifying the JSON object type.

gwTimestamp is the time of arrival at the NeoGateway for the payload encoded in
ISO8601 format.

payloadType is the message type.

nodeld is the Node ID of the node sending the data

port is the port to which the data was send

packageAgeMicroSecs is the package age of the payload data in micro seconds
packageAgeType is either “"normal” or "hapa”.

See "NeoCortec User Guide” document for more details on HAPA vs Normal.
payload is the actual payload data received, with each byte as decimal in an array

- 14 of 39 -

7.6.5 Node Info Reply

{"objectType":"nodeInfoReply",

"gwTimestamp":"2016-11-09T16:00:00.0002",

“nodeId”:50,

“uidHex":"ffffffffff",
“nodeType”:1}

where:

objectType is specifying the JSON object type.

neo.cortec

gwTimestamp is the time status at the NeoGateway was checked, encoded in

ISO8601 format.

nodeld is the Node ID of the node sending the data.

uidHex is the UID of the node sending the data.

nodeType is the type of the node sending the data:
1 = NC2400; 2= NC1000; 3= NC0400

7.6.6 Neighbour list

{"objectType" : "neighborListReply",

"gwTimestamp":"2016-11-09T16:00:00.0002",

“nodeId”:1, “RSSI”:
“nodeId”:2, *“RSSI”:
“nodeId”:3, “RSSI”":
“nodeId”:4, *“RSSI”:
“nodeId”:5, “RSSI”":
“nodeId”:6, “RSSI”":
“nodeId”:7, *“RSSI”:
“nodeId”:8, “RSSI”":
“nodeId”:9, “RSSI”":
“nodeId”:10, “RSSI”

where:

objectType is specifying the JSON object type.

1

WCoJoul & WN

10}

gwTimestamp is the time status at the NeoGateway was checked, encoded in

ISO8601 format.

nodeld is the Node ID of a neighbour node.

RSSI is the RSSI value of the neighbour node.

-15 of 39 -

neo.cortec

7.6.7 Network Command Reply

{"objectType": "networkCommandReply",
"gwTimestamp":"2016-11-09T16:00:00.0002",

“nodeId”:50,

“command”:0,
"payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]}

where:
objectType is specifying the JSON object type.
gwTimestamp is the time status at the NeoGateway was checked, encoded in
ISO8601 format.
nodeld is the Node ID of the node sending the data.
cmd is the actual network command.
payload is the actual payload data received, with each byte as decimal in an array

7.6.8 WES Status

{"objectType":"wesStatus",
"gwTimestamp":"2016-11-09T16:00:00.0002",
"status":0}

where:
objectType is specifying the JSON object type.
gwTimestamp is the time status at the NeoGateway was checked, encoded in
ISO8601 format.
status is the status byte in decimal.

7.6.9 WES Setup Request

{"objectType": "wesSetupRequest",
"gwTimestamp":"2016-11-09T16:00:00.000Z2",
"uidHex":"ffffffffff",
"appFunctionType":0}

Where:
objectType is specifying the JSON object type.
gwTimestamp is the time status at the NeoGateway was checked, encoded in
ISO8601 format.
uidHex is the UID of the node requesting to be configured.
appFunctionType is the type of function the nodes application performs.

-16 of 39 -

Nneo.cortec

-17 of 39 -

Nneo.cortec

8 Interfacing the NeoGateway with the Application Layer

The interface in and out of the NeoMesh network through the NeoGateway is
implemented as standard IP Sockets. To interface the gateway with a given Cloud service
or proprietary server, an application must be developed which on one side connects to
the NeoGateway IP Sockets, and on the other implements the necessary functionality to
connect with the Cloud service or proprietary server. Considering the available variety in
Cloud services and the differences between used protocols and required logic, the cloud
interface application does not come with the NeoGateway. We have two distinct end to
end solutions for cloud services. One of them builds upon the presented IP socket based
gateway code, while the other one is an ESP based monolithic solution to interface with
one specific cloud service. The former is presented at the end of this User guide, for the

latter please contact info@neocortec.com.

The interface application utilizing the IP sockets can be implemented in any programming
language as Python, Javascript, C/C++ and others, as long as it provides the necessary
methods for working with the sockets and the cloud solution. See the section 10.7
Raspberry Pi integration for an example on implementing an interface application for a
cloud service.

Included as NeoGateway

| Weotsemn |

Gateway Node Cloud specific Lagic

Message forwarding

\

NeoMesh Node

Inbound IP socket

MNeoMesh Node

B
<

ateway hardware

NeoMesh MNode

>

=
Cloud service provider

Cloud service

<
3
£
£
S
2
@
>
]
@
i
o
£
o
=
&
o
"
°
3
2
o

NecoMesh network

Meolesh Node NeoMesh Node JSON parser

P
a
et
o
o
a
=
-
s
=
:
=]
O

Additional i

| NeoMesh -Mesh network messages | B Galteway Device Hardware

=)

9 Security

While many layers of security, such as challenge-response and AES encryption, ensures
secure transport within a NeoMesh and all the way to the gateway, there are no security
features build into the NeoGateway. To ensure the integrity of the system it is advisable
to install a firewall configured to block incoming traffic. There are a number of Firewall
options available for the Linux operating system, which would be a good solution.

Note: It is recommendable to implement the Interface Application on the same device as
the Gateway, i.e. having the Interface Application connecting to localhost / 127.0.0.1. If

-18 of 39 -

Nneo.cortec

the interface application is hosted on another device, the firewall will have to be
configured to only allow incoming traffic from the trusted device.

-190f 39 -

Nneo.cortec

10 Raspberry Pi integration

For demonstration purposes, a Raspberry Pi Interface board is available along with a pre-
compiled executable file for the Raspberry Pi.

Using the Raspberry Pi platform as a commercial gateway implementation can be done,
but one has to consider if the specifications of the Raspberry Pi platform will match with
those of the target product. For instance, the Raspberry Pi operating temperature range
is not exactly well specified.

There are two methods for connecting a gateway node to the Raspberry Pi. We can either
choose to connect an evaluation board into one of the available USB ports of the
microcomputer or we can use the NeoCortec Gateway Module PiHat (Also referred as the
Hardware Interface Board). The setup steps for the two configurations are different, but
both uses the same NeoGateway software and both exposes the same IP sockets.

Raspberry pi with evaluation module (right) and PiHat Gateway node (left)

- 20 of 39 -

neo.cortec

10.1Hardware interface board.
The interface board is available in smaller quantities from NeoCortec. If larger quantities
are required, the design files are available for customers to build their own boards.

The Hardware interface board connects the NCxxxx module to the GPIO Header of the
Raspberry Pi board. This allows for the AAPI of the NCxxxx module to be connected to
UARTO, and the SAPI of the NCxxxx module to be connected through a Serial<->I12C
converter to a virtual UART".

10.2 Setup steps for the different solutions

PiHat Hardware interface Board Evaluation Board through USB

Download the NeoGateway software

e Download the NeoGateway software

pack pack

e Unpack the contents of the zip file e Unpack the contents of the zip file

e Disable the Bluetooth or serial e Connect the evaluation board
console e Install the NeoGateway software

e Connectthe hardware interface e Runthe NeoGateway software
board e Testthe NeoGateway software

e Install the NeoGateway software
e Run the NeoGateway software
e Testthe NeoGateway software

10.3 Preparation of Raspberry Pi for the Hardware interface board

Note: If you use an evaluation module connected through USB, you DO NOT need
this step.

Install the latest version of the Raspian distribution which can be downloaded from
https://www.raspberrypi.org/downloads/raspbian/ then follow the instructions provided

on the Raspberry Pi website.

When attached to the extension header, the hardware interface board will use UARTO to
connect to the application APl and the System API will be accessed by a virtual UART
through the pins normally configured as an 12C bus. By default, UARTO is assigned to
another purpose. Depending on the version of the Raspberry Pi, it can be either Serial
Console or on-board Bluetooth chipset interface. Raspberry Pi 3 model B and Raspberry
Pi 4 are using the UARTO for Bluetooth chipset, and earlier models are using it for serial

' The Raspberry Pi only has 1 physical UART
-21 0of 39 -

Nneo.cortec

console. Please refer to the Raspberry Pi website for specific information on the exact
model being used. In order to provide full functionality for the Hardware interface board,
the other services using the UART connections needs to be disabled.

If your Raspberry Pi is generation 1 or 2, then
Disable the Serial console, as described in section 10.3.1.

If your Raspberry pi is generation 3 or 4, then
Disable the Bluetooth device as described in section 10.3.2.

-22 of 39 -

neo.cortec

10.3.1 Disabling Serial Console

Note: Only perform this step your Raspberry Pi is generation 1 or 2.

To disable the Serial Console, perform the following steps:

First, edit the file /boot/cmdline.txt?, and remove any reference to the serial port
(ttyAMADO). An example could be:

Original: dwc_otg.lpm enable=0 console=ttyAMA0,115200
kgdboc=ttyAMAO0,115200 console=ttyl root=/dev/mmcblk0p2
rootfstype=ext4 elevator=deadline rootwait

New: dwc_otg.lpm enable=0 console=ttyl root=/dev/mmcblk0p2
rootfstype=ext4 elevator=deadline rootwait

Second, edit the file /etc/inittab, and search for the following line near the end of the
file:

TO0:23:respawn:/sbin/getty -L ttyAMAO 115200 vt100

Delete the line, or comments it out by putting a # in the beginning.

Reboot the Raspberry Pi, and the serial port is now available for NeoGateway to use.

10.3.2 Disabling the Bluetooth serial interface
Note: Only perform this step your Raspberry Pi is generation 3 or 4.

To disable the disable Bluetooth and restore UARTO in the GPIO header, do the
following:
Edit the file /boot/config.txt, and add this to the end of the file:

dtoverlay=pi3-disable-bt

To stop the Bluetooth module from using the UART, enter the following command in
the terminal:

$ sudo systemctl disable hciuart

Reboot the Raspberry Pi, and the serial port is now available for NeoGateway to use.

2You need to be root to be able to write the file. Use for instance sudo nano /boot/cmdline.txt

-23 of 39 -

Nneo.cortec

-24 of 39 -

neo.cortec

10.4 Running the installer script for the gateway software

Note: This step is necessary for both the Hardware interface board and the evaluation
board setup option. To use the precompiled executable for Raspberry Pi, you do not
have to rebuild the software!3

Before you install the code, make sure that the configuration settings correspond with the
way you want to use the gateway. All the settings are collected in the “"gw.cfg” file. As you
have seen before, you have two choices when setting up the software. You use either a
Hardware interface board or an evaluation board. The differences between the config file
for the two setups, you can see below:
(The settings which need to be configured differently in the two cases are highlighted
with grey)

PiHat Hardware interface Board Evaluation Board through USB
uart=/dev/ttyAMAO uart=/dev/ttyUSBO
speed=B115200 speed=B115200
recvPort=2000 recvPort=2000

sendPort=2001 sendPort=2001

serializer=json serializer=json
ctsTimeoutSecs=5 ctsTimeoutSecs=5
ctsSource=gpio ctsSource=ioctl

gpioPin=4 gpioPin=4

delimiter=\r\n delimiter=\r\n

After you have configured your “gw.cfg” file correctly, kindly proceed to the installation
of the NeoGateway software. At this step, you should find an “install.sh” file in the
“/Raspberry.Pi” folder of the downloaded NeoGateway package. Run this file with
administrator privileges. Please make sure that the permissions for the install script are
set correctly. For setting the permissions, navigate to the folder containing the file using
a command line, then run the following command:

$ sudo chmod 777 ./install.sh

For running the install script, stay in the same folder as the install file is located, then run
the command:

$.Jinstall.sh

3 In more concrete terms if you wish to use the code on a Raspberry Pi, skip over section 7.3.

-25 of 39 -

Nneo.cortec

If your install was successful, you do not have any additional steps to complete and you
can proceed to section 10.7 to test your installation.

-26 of 39 -

neo.cortec

10.5Installing the NeoGateway software manually

Note: You only need to perform this step, if the included automatic installer script
did not work correctly on your setup, or you want to double-check the correctness
of the install.

As part of the NeoGateway zip file, there is a precompiled executable for the Raspberry
Pi platform. Copy this to a desired location (e.g. /home/pi/NeoGateway/). To use this
executable, you do not have to rebuild the software!*

The gateway software comes with a configuration file included. This configuration file
needs to be copied to the same location, as the executable. Before copying the file,
modify the settings in it, according to the way you intend to set up your gateway. For the
setup option, see the examples under section 10.4.

We want to run the NeoGateway as a service® to make sure it runs independently, and
does not require a user to login to the Raspberry Pi, and further. Running the gateway as
a service will automatically make it available after power up. To achieve this, copy the
included NeoGW.service file to /lib/systemd/system/.

You should make sure, that the “NeoGW.service” file fits to the folder choices and folder
structure you have on your platform. For instance, the path to the NeoCortecGateway file,
or path to the actual serial device needs to be correct.

Please be aware, in order for the Gateway code to run, it needs to have run permissions
on the machine you are using it on. You can grant run permissions by executing the
command from the command line, assuming you did not change the recommended
install directory:

$ sudo chmod 777 /lib/systemd/NeoCortecGateway

When the file has been adapted to use for the local system, execute the following
command from the command line:

$ sudo systemctl enable NeoGW.service
Reboot the Raspberry Pi and check that the service is running by using NetCat:

$ nc localhost 2000

41n more concrete terms if you wish to use the code on a Raspberry Pi, skip over section 7.3.
> A Linux service is an application (or set of applications) that runs in the background waiting to be used,
or carrying out essential tasks.

-27 of 39 -

neo.cortec

This connects NetCat to the Outbound IP Socket of the NeoGateway, and directs the
output of the gateway to the terminal. If the NeoGateway service is not running, NetCat
will exit immediately. If the service is running, NetCat will not exit.

Of course this only checks, if the Outbound socket is open. This test does not tell you
anything about the connection to the NeoCortec module through the UART connection.
For making sure all parts of the setup are working as intended, please proceed to section
10.6 for a full test procedure.

10.6 Testing connection to NeoCortec module

In order to verify the Gateway software is installed correctly and the UART connection to
the module is working, we need to send a node info request to the send socket (2001)
and receive the correct reply from the Receive socket (2000). This test procedure tests
the whole connection chain from socket to module and back. It does not matter whether
you have used an evaluation board or a hardware extension board, as long as the setup
steps for the correct configuration have been performed. For the test you have to have
EITHER the Hardware interface board OR the evaluation board. The physical setup is as
follows:

Hurdwrare eifoce Buoard

Tork mansyae

PC FebaT Apet nedeiehne oot |

1

a
£ B

Puchelaumder

You will need a second computer connected the Pi through an Ethernet cable. On the
second computer you need Putty and Packet Sender installed. Make sure the NeoCortec
gateway software is running on the Pi.® The steps needed in order to verify the correct
operation of the gateway setup are as follows:

¢ run the command “nc localhost 2000” from the RasPi's command line. If the command does not return
immediately, then the socket is open.

-28 of 39 -

1.

Nneo.cortec

Connect your RaspberryPi board with the NeoCortec module to the second
computer through an Ethernet cable and make sure the RasPi gets power.
Verify that the Gateway software is running on the Pi.

. Initiate a connection through PUTTY. Your setup should look like the image below.

The default host name for your Raspberry Pi is “raspberypi” and the port to which
you need to connectis “port 2000". Make sure you set the connection type to “raw”,
then hit open.

#R PuTTY Configuration ? X
Category:
(=)~ Session [Basic options for your PuTTY session I
L_ogging Specify the destination you want to connect to
=) Terminal
Host Name (or IP address) Port
- Keyboard :
. Bell raspbenmypi 2000
- Features Connection type:
=) Window @®Raw (OTelnet ORlogin (OSSH (O Serial
gp;ﬁea@nce Load, save or delete a stored session
- Behaviour
. Translation Saved Sessions
[+ Selection
. Colours :
: Default Settings
(=) Connection RaspiTest Load
Data Save
- Telnet Delete
~ SSH
- Seria Close window on exit:
(OAways (ONever (@ Only on clean exit
About Help Open Cancel

-29 of 39 -

Nneo.cortec

4. After the connection is opened, start an instance of PacketSender and copy the

following message into the ASCIl textbox. Set the address to the IP of your
Raspberry Pi and the port to “2001".

4= Pacieet Sender - IPs: 182.162.200.195, 165.254.32.101, faldln:2deb:ef23:8c 302065 %ethernat 32769, £e00:73%c%eS5d2:1Ta2:26da%avreless 32768 - Ll X
File Teols Multicast iHelp
Mot { bl N |
ASCIT | {abjectType’s eighbor siRequest Q |
HEX |75 2206F 62086561 759 7S TU L5 22 30 2200 G565 LT GB 02 EF 724069 T3 T4 5265 T 7505 FA T4 22 7e Q| Losdris
Accress [269,254105.91 O | Port [200: © ResendCeley [0 Q] v v | sow Save

Neete Swed Packet [Parsistent TOP

Send Name KResend {sec) ToAddress lToPort Mathed ASTIL

< >

Oear L2g () MiegTraffc | Savntog Save Traffc Packet| | Copy to Chonoard
Tme From1P FromFort TolP ToPxt Method Grr AsCO

< >

e

5. After you have hit send, you should see the request and the reply showing up in

the bottom part of the packet sender window.

13:11:33.032 188,25... 2001 You 5134 TCP {"objactTyoa": replytise”, gwhime TB22GF626A 6563 745479 065223422 724
& 13:11:33.030 You 51384 169.232.105.91 200! e (“objectType": "naighborlistRequast’} Tb 22 6f 62 a 65 63 74 54 79 70 65 22 32 22 6e 5l

If you have received a reply similar to the bottom line on the picture above, your
setup works. If your reply looks like the image below, you do not have connection
to the NeoCortec node, and you should check the gateway setup again.

- 30 of 39 -

Nneo.cortec

o 13:16:15.556 166.25... 2001 You 3405 TP
& 13:16:15056 166.25... 2000 You 51405 XP
o 13:06:15.05 You 37405 168.254.105.91 2000 e {"objectlype " neighborListRequest™) o 22 6f 62 52 05 03 74 54 79 7065 22 34 22 Ge B

-310f39-

neo.cortec

10.7 Interface Application DEMO

Note: This part of the user guide is only instructional, and does not intend to present
a full, end to end solution. The goal is to show how to interface with the NeoGateway
software.

The final step is to write an application which connects the NeoGateway to an application
layer. In this example, we will connect the NeoGateway to a cloud service. We will be
using Node-RED’ as the programming language which can easily be installed on a
Raspberry Pi.

The interface application will connect the NeoMesh with Microsoft Power BI
(https://powerbi.microsoft.com/) . Strictly speaking Power Bl is not a cloud platform, but
a visualisation & analytics tool for various types of data, but it is easy to get started with,

free to use and exemplifies well how to get data from the NeoGateway to a 3'rd party
platform.

The implementation assumes that the NeoMesh nodes are configured to send
temperature and humidity data. For the required configuration steps, please refer to the
Quickstart guide or to the user manual.

10.71 Setting up Power Bl

If not already done, create an account at the Power Bl website
(https://powerbi.microsoft.com/) and sign in to the account. There are two steps which

needs to be done; 1) Create a Streaming Dataset, 2) Create a Dashboard to view the
data.

7 https://nodered.org
-32 of 39 -

10.7.1.1

Create streaming dataset

neo.cortec

Click on the "My workspace” button then select to “skip” the prompted options.

Poweer BI

P Heme
YT Tawuile
(5 loacen)
Anps
Shared wih me

A Looen

Veitbspuces

My wackapace

Oadnboarnex

Expand the menu under the little "+Create” button, then

’- Py winkegune

1%t click

Discover content

Yau're on your way to exploring your data

Lat's start

Get Data

iy crganization Services
o ¥
e %
iz
Ow Cwt
Paisec Shonls ale R SRR TG

to get to the section where the dataset can be setup.

3 lome

Farmites

Y Hwomnl

hren

Shased with me

Lean

S Werhspuas

Ny workmgece

Dachbeowric

ANms

Create new centent

and monitoring what matters with 3if your group members.

oy getting some daia

Download Power 2! Deskiog tor the best report-building experience

2" click

Fles
[
" o dlat

-33 of 39 -

click on “Streaming datasets”

1t click

2" click /

neo.cortec

In the pop-up menu on the right, select APl as type. Give a name to the dataset, and add
these values:

(®) New look off

@)

New streaming dataset

* Required

Dataset name *

ACTIONS
Values from stream
TimeStam DateTime v j
emperature lumbe v j
— = i e
@ [| r lum Ll
[||
R eemt—— - .
Enter a new value name ext v

0.4087"

L4054

Historic data analysis

On

Back Create Cancel

Click create to get the APl endpoint push URL. Save the URL for later use.

- 34 of 39 -

neo.cortec

10.7.1.2 Create Power Bl Dashboard

Expand menu on the right side under the “+ create” once again, and click the
“Dashboard” option to add a new dashboard. Give it a name. Click “Add tile” to add a
chart for the temperature data. Select “"CUSTOM STREAMING DATA” and click Next. Now
select the dataset created in the previous section and click next. Select “Line chart” as
visualization type.

Now click “Add value” under “Axis” and select Timestamp. Next click “Add value” under
“Values” and select Temperature. Click Next, and then Apply. This will place a chart with
the temperature data on the Dashboard.

Repeatthe steps above, selecting Humidity in the final step to add a chart for the Humidity
data. See the NeoCortec User Guide Document for details on how to configure the
NeoMesh nodes for this.

10.7.2 Node-Red installation

This section will walk through the Interface Application in Node-Red, step by step. First
you need to install NodeRed on your Linux platform, as it might not come preinstalled. If
you happen to have NodeRed installed, feel free to skip this step. For a detailed
installation-and-run guide, read the official getting started page

10.7.3 The code to interface with Power BI.
In order to get our data to the cloud, we need to replicate the program below.

NeoGateway —— Create json object —
@ connecie A
_
R
_,”"l'
7 Check objectType -, receivedPayload
///
. Fetch Sensor Data — Timestamp & Format —
/’_/
< sendtopowers | —— JiNSopacs)

Figure 1 - Node-Red Flow

Take the nodes from the left, then drag and drop them to your “workbench”. For more
detailed instructions, visit the official “create your first flow” page.

In the following sections we will move from node to node from top left to bottom right.

- 35 of 39 -

Nneo.cortec

10.7.3.1 NeoGateway
The first box is a TCP Input Node. It connects to the Outbound socket of the NeoGateway.
It is configured like this:

Edit tcp In node

Done
® Type Connect to + pot 2000
athost localhost
= Output stream of + Strng + payload(s)
delimited by | '\n
= Topic
% Name NeoGateway

Figure 2 - TCP Input Node

10.7.3.2 Create JSON object
This node converts the received data from the NeoGateway into a true JSSON object in
Node-Red. No configuration is required.

- 36 of 39 -

Nneo.cortec

10.7.3.3 Check objectType

This node looks at the “objectType” field of the JSSON message, and filters out any other
object types than “receviedPayload”. It is configured like this:

Edi wwitch node

¥ urw Dree<ebieTipe

Propery v 1oy gkl Ty e

— o N mosondPaydiad A

chackng in e

Figure 3 - Filter for objectType

Note: In a real implementation of an Interface Application, there shall be handlers for all
object types, but in this case it is simplified to only handle receivedPayload. Make sure
you do not mistype the filter criteria.

- 37 of 39 -

Nneo.cortec

10.7.3.4 Fetch Sensor Data

This node is a Function Node, which contains Javascript Code which converts the raw
JSON data to temperature and humidity data. It is configured like this:

Edit function nade

B N Farah Sencar Nata G~
/& Functon

1 var tosperalirc - Jag.payicad.payleodf .

¢ tcameratare 3 54 11 2 * (tcamerature S E5526));

J Fer.tenparatuce = tempecature)

5 vee bunldocy = fag.saylioad. paytoad S

6 hunidity 6 <+ {33 * IhuoigiLy g 6)):

T Toq.bunidity - Ranidity)

u

9 Fesurn nag;

20 Outputs 1
Saa Ma Ir‘e tab ‘or nelp wrtting notiora

Figure 4 - Javascript code to convert raw data to sensor values

More details on how the payload data is formatted can be found in the NeoCortec User
Guide Document.

- 38 of 39 -

Nneo.cortec

10.7.3.5 Timestamp & Format

This is a Function Node, which contains Javascript Code that timestamps the data and
converts into a format expected by Power Bl. It is configured like this:

L txmrrad

EXER

Figure 5 - Javascript code to timestamp & format data

10.7.3.6 Send to Power Bl

This is a HTTP Request node which in this case connects to the APl endpoint of Power Bl
streaming dataset created when setting up Power Bl. It is configured like this:

EdIthitp request node
= Mathos POST

QURL htips:fapi.pracrblcomteta’e? 7efA0f-B275-479
Erable g=cure |SSUTLE) conneclion

Use basic askartication
€ Faturn a UTF-2 string

¥ Narre Sand 1o Powar BI

Figure 6 - HTTP POST to Power BI

The actual URL shall be the one created when setting up the Power Bl streaming
dataset.

-39 of 39 -

