
 

 

 

 
 

 
 
 
 

User Guide for NeoGateway 
 
 
 
 
 

Doc Status: Release 

Doc version: 1.3 
Date: June 2020 

neo.cortec.



 

 

neo.cortec.

Table of Contents 
 
1	 Document revisions ....................................................................................................... 4	
2	 Introduction .................................................................................................................... 4	
3	 Abbreviations ................................................................................................................. 4	
4	 Definitions ...................................................................................................................... 4	
5	 NeoGateway Technical overview .................................................................................. 5	
6	 Hardware integration ..................................................................................................... 6	
7	 Using the gateway software .......................................................................................... 6	

7.1	 Prerequisites ................................................................................................................. 6	

7.2	 Getting the software .................................................................................................... 6	

7.3	 Building the software .................................................................................................. 6	

7.4	 Running the software .................................................................................................. 7	

7.4.1	 Configuration parameters .................................................................................... 7	

7.5	 Inbound IP Socket communication ........................................................................... 9	

7.5.1	 Send unacknowledged payload data to a node in the network ..................... 9	

7.5.2	 Send acknowledged payload data to a node in the network .......................... 9	

7.5.3	 Send a Node Info Request to the Gateway node ............................................ 10	

7.5.4	 Send Neighbor List Request to the Gateway node ......................................... 10	

7.5.5	 Send Network Command to the Gateway node ............................................. 10	

7.5.6	 Send WES command to the Gateway node ..................................................... 11	

7.5.7	 Send WES Setup Response to an unconfigured node ................................... 11	

7.5.8	 Send ALT Command to the Gateway node ...................................................... 11	

7.6	 Outbound IP Socket communication ...................................................................... 12	

7.6.1	 Acknowledge for previously send data ............................................................ 12	

7.6.2	 Non-Acknowledge for previously send data .................................................... 12	

7.6.3	 Unacknowledged Payload Data Received ....................................................... 13	

7.6.4	 Acknowledged Payload Data Received ............................................................ 14	

7.6.5	 Node Info Reply ................................................................................................... 15	

7.6.6	 Neighbour list ....................................................................................................... 15	

7.6.7	 Network Command Reply .................................................................................. 16	

7.6.8	 WES Status ............................................................................................................ 16	

7.6.9	 WES Setup Request ............................................................................................. 16	

8	 Interfacing the NeoGateway with the Application Layer .............................................. 18	
9	 Security ........................................................................................................................ 18	
10	 Raspberry Pi integration .......................................................................................... 20	

10.1	 Hardware interface board. ....................................................................................... 21	

10.2	 Setup steps for the different solutions .................................................................... 21	

10.3	 Preparation of Raspberry Pi for the Hardware interface board ........................... 21	

10.3.1	 Disabling Serial Console ..................................................................................... 23	

10.3.2	 Disabling the Bluetooth serial interface ............................................................ 23	

10.4	 Running the installer script for the gateway software ........................................... 25	



 

 

neo.cortec.

10.5	 Installing the NeoGateway software manually ....................................................... 27	

10.6	 Testing connection to NeoCortec module ............................................................ 28	

10.7	 Interface Application DEMO .................................................................................... 32	

10.7.1	 Setting up Power BI ............................................................................................. 32	

10.7.1.1	 Create streaming dataset ............................................................................ 33	

10.7.1.2	 Create Power BI Dashboard ........................................................................ 35	

10.7.2	 Node-Red Code ................................................................................................... 35	

10.7.2.1	 NeoGateway .................................................................................................. 36	

10.7.2.2	 Create JSON object ..................................................................................... 36	

10.7.2.3	 Check objectType ......................................................................................... 37	

10.7.2.4	 Fetch Sensor Data ......................................................................................... 38	

10.7.2.5	 Timestamp & Format .................................................................................... 39	

10.7.2.6	 Send to Power BI ........................................................................................... 39	



 

 - 4 of 39 – 
 

 

neo.cortec.

1 Document revisions 
 

Document version Details 

1.0 Initial release 

1.1 Fixed typo in path to home directory in section 10.3 

1.2 Unacknowledged messages have been introduced together 

with some other unimplemented messages, and the document 

has been through a general review and update. 

1.3 Overhaul of the installation steps and adding an extra control 

section for checking the correctness of the installation. Config 

files introduced. 

 

2 Introduction 
This document describes how to use the NeoGateway to interface the NeoMesh ultra 

low power wireless mesh network to an IP network. 

3 Abbreviations 
 

• HW – Hardware 

• SW – Software 

• UART - Universal Asynchronous Receiver/Transmitter 

• RX – Receive 

• TX – Transmit 

• IP – Internet Protocol 

• AAPI – Application API for the NeoCortec NeoMesh modules 

• SAPI – System API for the NeoCortec NeoMesh modules 

• JSON – JavaScript Object Notation 

 

4 Definitions 
(None) 

 

 

 

  



 

 - 5 of 39 – 
 

 

neo.cortec.

5 NeoGateway Technical overview 
The NeoGateway is provided as Open Source software designed to work on the 

Raspberry Pi platform. The software will however operate without problems on most 

Linux systems. The NeoGateway is based on the NeoMesh API, and is structured 

according to the figure below: 

 

 

The architecture is such that payload data being send from a node inside the NeoMesh 

network to the gateway node will be delivered on the Outbound IP Socket in JSON 

format. Similarly, payload data being send from the IP network shall be send as a JSON 

formatted package to the inbound IP Socket. 

This allows for a very versatile gateway design which can easily be adapted to interface 

with both Cloud services as well as local or remote proprietary servers. 

  

N
e

o
G

a
te

w
a

y
 

NeoMesh API 

JSON Parser 

Inbound 

IP Socket 

Outbound 

IP Socket 

Serial Port  Glue Layer 



 

 - 6 of 39 – 
 

 

neo.cortec.

6 Hardware integration 
The NeoGateway is designed such that only limited hardware resources are required. The 

software is designed for the Linux OS, but can run on most embedded platforms with 

little adjustments required. 

The minimum requirements for the hardware platform is to have a UART port and at least 

one GPIO (for CTS signal), alternatively a full serial port including CTS signalling. 

Additionally, an Ethernet interface or WLAN interface is required to connect to an IP 

Network. 

For additional information on how to connect the NeoMesh modules to the Gateway 

hardware, please refer to the NeoCortec Integration Manual for NCxxxx Series Modules. 

7 Using the gateway software 

7.1 Prerequisites 

In the following sections, it is assumed that the NeoGateway software is being used on a 

Linux platform. Similarly, it is assumed that the Linux installation is setup with an up-to-

date GNU Compiler (GCC) and “Make” build automation tool.  

7.2 Getting the software 

The NeoGateway software can be downloaded from www.neocortec.com  

The download package contains the full source code. We recommend downloading the 

package to a local directory dedicated to building the gateway software. 

7.3 Building the software 

 
Note: If you intend to use the software on a Raspberry Pi platform, you DO NOT 
need to build the gateway software. The package you downloaded contains a 
prebuilt Raspberry Pi version. 
 
To build the NeoGateway software, simply navigate to this folder: 

/src/NeoCortecGateway/Release 

In this folder, build the software by entering ‘make’ and hit enter. This will create an 

executable file named NeoCortecGateway. 

  



 

 - 7 of 39 – 
 

 

neo.cortec.

7.4 Running the software 

The NeoGateway software is executed from the terminal, and has a number of command 

line parameters which affect the configuration of the gateway. The syntax is as follows: 

NeoCortecGateway [-c config-file] 

NeoCortecGateway [-C key1=value1[,keyN=valueN...]] 

where “config-file” is a text file which can contain the parameters. 

If no parameters are given, the default values will be used. Note that uppercase / 

lowercase is important. 

7.4.1 Configuration parameters  

Parameter Explanation Possible values 

uart Specifies which serial interface 

to use 

Any valid reference to a serial 

interface 

[Default = /dev/ttyAMA0] 

speed Specifies the baud rate on the 

serial interface.  

NOTE: Only B115200 is 

supported  

B57600 

B115200 (Default) 

B230400 

ctsSource Specifies where the CTS signal 

from the NCxxxx module is 

connected 

ioctl – uses the CTS pin from a 

serial interface which supports 

hardware flow control 

gpio – uses a GPIO pin when the 

serial interface does not support 

hardware flow control 

gpioPin In case of using GPIO to 

interface the CTS signal, this 

parameter specifies which Pin is 

used 

Any valid GPIO pin number 

delimiter Specifies what delimiter is being 

used for terminating messages 

on the Outbound IP Socket 

\n (default) 

serializer Specifies the format used on the 

Inbound and Outbound IP 

Sockets 

NOTE: Only JSON supported  

JSON (default) 

xml 

recvPort Specifies the port number of the 

Inbound IP Socket 

Any valid port number 

[Default = 2000] 

sendPort Specifies the port number of the 

Outbound IP Socket 

Any valid port number 

[Default = 2001] 



 

 - 8 of 39 – 
 

 

neo.cortec.

ctsTimeoutSecs Specifies the timeout period for 

the module to accept the 

message. 

Shall be adjusted according to 

the scheduled data rate of the 

network 

[Default = 5] 

 

  



 

 - 9 of 39 – 
 

 

neo.cortec.

7.5 Inbound IP Socket communication 

In the following section each command accepted by the NeoGateway on the inbound IP 

Socket is described. 

7.5.1 Send unacknowledged payload data to a node in the network 

 
{"objectType":"sendPayload", 
 "payloadType":"unacknowledged", 
 "nodeId":16, 
 "port":0, 
 "sequenceNo":564, 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

payloadType specifies that the payload shall be sent “unacknowledged”. 

nodeId is the Node Id of the destination node as decimal (0x0010 in the example 

above). 

port is the port on the destination node 

sequenceNo is an Application sequence number. 

payload is the actual payload data to send, with each byte as decimal in an array 

 

7.5.2 Send acknowledged payload data to a node in the network 

 
{"objectType":"sendPayload", 
 "payloadType":"acknowledged", 
 "nodeId":16, 
 "port":0, 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

payloadType specifies that the payload shall be sent “acknowledged”. 

nodeId is the Node Id of the destination node as decimal (0x0010 in the example 

above). 

port is the port on the destination node 

payload is the actual payload data to send, with each byte as decimal in an array 

 

  



 

 - 10 of 39 – 
 

 

neo.cortec.

7.5.3 Send a Node Info Request to the Gateway node 

 
{"objectType":"nodeInfoRequest"} 

 

where: 

objectType is specifying the JSON object type. 

 

7.5.4 Send Neighbor List Request to the Gateway node 

 

{"objectType":"neighborListRequest"} 

 

where: 

objectType is specifying the JSON object type. 

 

7.5.5 Send Network Command to the Gateway node 

 
{"objectType":"networkCommand", 
 "nodeId":16, 
 "cmd":0, 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

nodeId is the Node Id of the destination node as decimal (0x0010 in the example 

above). 

cmd is the actual network command. 

payload is the actual payload data to send, with each byte as decimal in an array 

 

  



 

 - 11 of 39 – 
 

 

neo.cortec.

7.5.6 Send WES command to the Gateway node 

 
{"objectType":"wesCmd", 
 "cmd":0} 

 

where: 

objectType is specifying the JSON object type. 

cmd is the actual WES command. See Integration Manual for NCxxxx Series 

Modules for details. 

 

7.5.7 Send WES Setup Response to an unconfigured node 

 
{"objectType":"wesResponse", 
 "nodeId":16, 
 "uidHex":"ffffffffff", 
 
"appSettings":"0102030405060708090a0b0c0d0e0f101112131415161718
"} 

 

where: 

objectType is specifying the JSON object type. 

nodeId is specifying the Node ID which the node being set up will get. 

uidHex is the UID of the node which will be set up 

appSettings is the 24 bytes long Generic Application settings used in Normal 

Mode which will be send to the node being setup. 

 

7.5.8 Send ALT Command to the Gateway node 

 
{"objectType":"altCmd", 
 "cmd":0} 

 

where: 

objectType is specifying the JSON object type. 

cmd is the actual ALT command. 

 
 

  



 

 - 12 of 39 – 
 

 

neo.cortec.

7.6 Outbound IP Socket communication 

When the NeoGateway is running, all AAPI messages transmitted by the NCxxxx module 

in the gateway are send to the outbound IP socket. Each type is described in the following 

sections. 

 

7.6.1 Acknowledge for previously send data 

 
{"objectType":"ack", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "nodeId":32} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time of arrival at the NeoGateway encoded in ISO8601 

format. 

nodeId is the Node ID of the node sending the Acknowledge. 

7.6.2 Non-Acknowledge for previously send data 

 
{"objectType":"nack", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "nodeId":32} 

where: 

 

objectType is specifying the JSON object type. 

gwTimestamp is the time of arrival at the NeoGateway encoded in ISO8601 

format. 

nodeId is the Node ID of the node sending the Non-Acknowledge. 

 

  



 

 - 13 of 39 – 
 

 

neo.cortec.

7.6.3 Unacknowledged Payload Data Received  

 
{"objectType":"receivedPayload", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "payloadType":"unacknowledged", 
 ”sequenceNo”:564, 
 "nodeId":32, 
 "port":0, 
 "packageAgeMicroSecs":750000, 
 "packageAgeType":"normal", 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time of arrival at the NeoGateway for the payload encoded in 

ISO8601 format. 

payloadType is the message type. 

sequenceNo is an Application sequence number. 

nodeId is the Node ID of the node sending the data 

port is the port to which the data was send 

packageAgeMicroSecs is the package age of the payload data in micro seconds 

packageAgeType is either “normal” or “hapa”. 

See “NeoCortec User Guide” document for more details on HAPA vs Normal. 

payload is the actual payload data received, with each byte as decimal in an array 

 

  



 

 - 14 of 39 – 
 

 

neo.cortec.

7.6.4 Acknowledged Payload Data Received  

 
{"objectType":"receivedPayload", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "payloadType":"acknowledged", 
 "nodeId":32, 
 "port":0, 
 "packageAgeMicroSecs":750000, 
 "packageAgeType":"normal", 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time of arrival at the NeoGateway for the payload encoded in 

ISO8601 format. 

payloadType is the message type. 

nodeId is the Node ID of the node sending the data 

port is the port to which the data was send 

packageAgeMicroSecs is the package age of the payload data in micro seconds 

packageAgeType is either “normal” or “hapa”. 

See “NeoCortec User Guide” document for more details on HAPA vs Normal. 

payload is the actual payload data received, with each byte as decimal in an array 

 

  



 

 - 15 of 39 – 
 

 

neo.cortec.

7.6.5 Node Info Reply 

 
{"objectType":"nodeInfoReply", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 “nodeId”:50, 
 “uidHex”:”ffffffffff”, 
 “nodeType”:1} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time status at the NeoGateway was checked, encoded in 

ISO8601 format. 

nodeId is the Node ID of the node sending the data. 

uidHex is the UID of the node sending the data. 

nodeType is the type of the node sending the data: 

 1 = NC2400; 2= NC1000; 3= NC0400 

 

7.6.6 Neighbour list 

 

{"objectType":"neighborListReply", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 “nodeId”:1, “RSSI”:1 
 “nodeId”:2, “RSSI”:2 
 “nodeId”:3, “RSSI”:3 
 “nodeId”:4, “RSSI”:4 
 “nodeId”:5, “RSSI”:5 
 “nodeId”:6, “RSSI”:6 
 “nodeId”:7, “RSSI”:7 
 “nodeId”:8, “RSSI”:8 
 “nodeId”:9, “RSSI”:9 
 “nodeId”:10, “RSSI”:10} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time status at the NeoGateway was checked, encoded in 

ISO8601 format. 

nodeId is the Node ID of a neighbour node. 

RSSI is the RSSI value of the neighbour node. 

 

  



 

 - 16 of 39 – 
 

 

neo.cortec.

7.6.7 Network Command Reply 

 
{"objectType":"networkCommandReply", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 “nodeId”:50, 
 “command”:0, 
 "payload":[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time status at the NeoGateway was checked, encoded in 

ISO8601 format. 

nodeId is the Node ID of the node sending the data. 

cmd is the actual network command. 

payload is the actual payload data received, with each byte as decimal in an array 

 

7.6.8 WES Status 

 
{"objectType":"wesStatus", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "status":0} 

 

where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time status at the NeoGateway was checked, encoded in 

ISO8601 format. 

status is the status byte in decimal. 

 

7.6.9 WES Setup Request 

 
{"objectType":"wesSetupRequest", 
 "gwTimestamp":"2016-11-09T16:00:00.000Z", 
 "uidHex":"ffffffffff", 
 "appFunctionType":0} 

 

Where: 

objectType is specifying the JSON object type. 

gwTimestamp is the time status at the NeoGateway was checked, encoded in 

ISO8601 format. 

uidHex is the UID of the node requesting to be configured. 

appFunctionType is the type of function the nodes application performs. 



 

 - 17 of 39 – 
 

 

neo.cortec.

 

  



 

 - 18 of 39 – 
 

 

neo.cortec.

8 Interfacing the NeoGateway with the Application Layer 
The interface in and out of the NeoMesh network through the NeoGateway is 

implemented as standard IP Sockets. To interface the gateway with a given Cloud service 

or proprietary server, an application must be developed which on one side connects to 

the NeoGateway IP Sockets, and on the other implements the necessary functionality to 

connect with the Cloud service or proprietary server. Considering the available variety in 

Cloud services and the differences between used protocols and required logic, the cloud 

interface application does not come with the NeoGateway. We have two distinct end to 

end solutions for cloud services. One of them builds upon the presented IP socket based 

gateway code, while the other one is an ESP based monolithic solution to interface with 

one specific cloud service. The former is presented at the end of this User guide, for the 

latter please contact info@neocortec.com. 

The interface application utilizing the IP sockets can be implemented in any programming 

language as Python, Javascript, C/C++ and others, as long as it provides the necessary 

methods for working with the sockets and the cloud solution. See the section 10.7 

Raspberry Pi integration for an example on implementing an interface application for a 

cloud service. 

 

9 Security 
While many layers of security, such as challenge-response and AES encryption, ensures 

secure transport within a NeoMesh and all the way to the gateway, there are no security 

features build into the NeoGateway. To ensure the integrity of the system it is advisable 

to install a firewall configured to block incoming traffic. There are a number of Firewall 

options available for the Linux operating system, which would be a good solution. 

Note: It is recommendable to implement the Interface Application on the same device as 

the Gateway, i.e. having the Interface Application connecting to localhost / 127.0.0.1. If 



 

 - 19 of 39 – 
 

 

neo.cortec.

the interface application is hosted on another device, the firewall will have to be 

configured to only allow incoming traffic from the trusted device. 

  



 

 - 20 of 39 – 
 

 

neo.cortec.

10 Raspberry Pi integration 
For demonstration purposes, a Raspberry Pi Interface board is available along with a pre-

compiled executable file for the Raspberry Pi.  

Using the Raspberry Pi platform as a commercial gateway implementation can be done, 

but one has to consider if the specifications of the Raspberry Pi platform will match with 

those of the target product. For instance, the Raspberry Pi operating temperature range 

is not exactly well specified. 

There are two methods for connecting a gateway node to the Raspberry Pi. We can either 

choose to connect an evaluation board into one of the available USB ports of the 

microcomputer or we can use the NeoCortec Gateway Module PiHat (Also referred as the 

Hardware Interface Board). The setup steps for the two configurations are different, but 

both uses the same NeoGateway software and both exposes the same IP sockets. 

  

Raspberry pi with evaluation module (right) and PiHat Gateway node (left) 

  



 

 - 21 of 39 – 
 

 

neo.cortec.

 

10.1 Hardware interface board. 

The interface board is available in smaller quantities from NeoCortec. If larger quantities 

are required, the design files are available for customers to build their own boards. 

The Hardware interface board connects the NCxxxx module to the GPIO Header of the 

Raspberry Pi board. This allows for the AAPI of the NCxxxx module to be connected to 

UART0, and the SAPI of the NCxxxx module to be connected through a Serial<->I2C 

converter to a virtual UART1.  

10.2 Setup steps for the different solutions 

PiHat Hardware interface Board Evaluation Board through USB 

  

• Download the NeoGateway software 

pack 

• Unpack the contents of the zip file 

• Disable the Bluetooth or serial 

console 

• Connect the hardware interface 

board 

• Install the NeoGateway software 

• Run the NeoGateway software 

• Test the NeoGateway software 

• Download the NeoGateway software 

pack 

• Unpack the contents of the zip file 

• Connect the evaluation board 

• Install the NeoGateway software 

• Run the NeoGateway software 

• Test the NeoGateway software 

 

10.3 Preparation of Raspberry Pi for the Hardware interface board 

 
Note: If you use an evaluation module connected through USB, you DO NOT need 
this step. 
 
Install the latest version of the Raspian distribution which can be downloaded from 

https://www.raspberrypi.org/downloads/raspbian/ then follow the instructions provided 

on the Raspberry Pi website. 

When attached to the extension header, the hardware interface board will use UART0 to 

connect to the application API and the System API will be accessed by a virtual UART 

through the pins normally configured as an I2C bus. By default, UART0 is assigned to 

another purpose. Depending on the version of the Raspberry Pi, it can be either Serial 

Console or on-board Bluetooth chipset interface. Raspberry Pi 3 model B and Raspberry 

Pi 4 are using the UART0 for Bluetooth chipset, and earlier models are using it for serial 

 
1 The Raspberry Pi only has 1 physical UART 



 

 - 22 of 39 – 
 

 

neo.cortec.

console. Please refer to the Raspberry Pi website for specific information on the exact 

model being used. In order to provide full functionality for the Hardware interface board, 

the other services using the UART connections needs to be disabled. 

If your Raspberry Pi is generation 1 or 2, then 

 Disable the Serial console, as described in section 10.3.1. 

If your Raspberry pi is generation 3 or 4, then 

 Disable the Bluetooth device as described in section 10.3.2.  



 

 - 23 of 39 – 
 

 

neo.cortec.

10.3.1 Disabling Serial Console 

 
Note: Only perform this step your Raspberry Pi is generation 1 or 2. 
 
To disable the Serial Console, perform the following steps: 

First, edit the file /boot/cmdline.txt2, and remove any reference to the serial port 

(ttyAMA0). An example could be: 

Original: dwc_otg.lpm_enable=0 console=ttyAMA0,115200 
kgdboc=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 
rootfstype=ext4 elevator=deadline rootwait 
 

New: dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 
rootfstype=ext4 elevator=deadline rootwait 
 

Second, edit the file /etc/inittab, and search for the following line near the end of the 

file: 

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100 

 

Delete the line, or comments it out by putting a # in the beginning. 

Reboot the Raspberry Pi, and the serial port is now available for NeoGateway to use. 

 

 

10.3.2 Disabling the Bluetooth serial interface 

 
Note: Only perform this step your Raspberry Pi is generation 3 or 4. 
 

To disable the disable Bluetooth and restore UART0 in the GPIO header, do the 

following: 

Edit the file /boot/config.txt, and add this to the end of the file: 

 
dtoverlay=pi3-disable-bt 

 

To stop the Bluetooth module from using the UART, enter the following command in 

the terminal: 

$ sudo systemctl disable hciuart 

Reboot the Raspberry Pi, and the serial port is now available for NeoGateway to use. 

 
2 You need to be root to be able to write the file. Use for instance sudo nano /boot/cmdline.txt 



 

 - 24 of 39 – 
 

 

neo.cortec.

  



 

 - 25 of 39 – 
 

 

neo.cortec.

10.4 Running the installer script for the gateway software 

 
Note: This step is necessary for both the Hardware interface board and the evaluation 
board setup option. To use the precompiled executable for Raspberry Pi, you do not 
have to rebuild the software!3 

 

Before you install the code, make sure that the configuration settings correspond with the 

way you want to use the gateway. All the settings are collected in the “gw.cfg” file. As you 

have seen before, you have two choices when setting up the software. You use either a 

Hardware interface board or an evaluation board. The differences between the config file 

for the two setups, you can see below: 

(The settings which need to be configured differently in the two cases are highlighted 

with grey) 

PiHat Hardware interface Board Evaluation Board through USB 

uart=/dev/ttyAMA0 

speed=B115200 

recvPort=2000 

sendPort=2001 

serializer=json 

ctsTimeoutSecs=5 

ctsSource=gpio 

gpioPin=4 

delimiter=\r\n 

uart=/dev/ttyUSB0 

speed=B115200 

recvPort=2000 

sendPort=2001 

serializer=json 

ctsTimeoutSecs=5 

ctsSource=ioctl 

gpioPin=4 

delimiter=\r\n 

 

After you have configured your “gw.cfg” file correctly, kindly proceed to the installation 

of the NeoGateway software. At this step, you should find an “install.sh” file in the 

“/Raspberry.Pi” folder of the downloaded NeoGateway package. Run this file with 

administrator privileges. Please make sure that the permissions for the install script are 

set correctly. For setting the permissions, navigate to the folder containing the file using 

a command line, then run the following command: 

$ sudo chmod 777 ./install.sh 

For running the install script, stay in the same folder as the install file is located, then run 

the command: 

$ ./install.sh 

 
3 In more concrete terms if you wish to use the code on a Raspberry Pi, skip over section 7.3. 



 

 - 26 of 39 – 
 

 

neo.cortec.

If your install was successful, you do not have any additional steps to complete and you 

can proceed to section 10.7 to test your installation. 

  



 

 - 27 of 39 – 
 

 

neo.cortec.

10.5 Installing the NeoGateway software manually 

 
Note: You only need to perform this step, if the included automatic installer script 
did not work correctly on your setup, or you want to double-check the correctness 
of the install. 
 

As part of the NeoGateway zip file, there is a precompiled executable for the Raspberry 

Pi platform. Copy this to a desired location (e.g. /home/pi/NeoGateway/). To use this 

executable, you do not have to rebuild the software!4 

The gateway software comes with a configuration file included. This configuration file 

needs to be copied to the same location, as the executable. Before copying the file, 

modify the settings in it, according to the way you intend to set up your gateway. For the 

setup option, see the examples under section 10.4. 

We want to run the NeoGateway as a service5 to make sure it runs independently, and 

does not require a user to login to the Raspberry Pi, and further. Running the gateway as 

a service will automatically make it available after power up. To achieve this, copy the 

included NeoGW.service file to /lib/systemd/system/. 

You should make sure, that the “NeoGW.service” file fits to the folder choices and folder 

structure you have on your platform. For instance, the path to the NeoCortecGateway file, 

or path to the actual serial device needs to be correct. 

Please be aware, in order for the Gateway code to run, it needs to have run permissions 

on the machine you are using it on. You can grant run permissions by executing the 

command from the command line, assuming you did not change the recommended 

install directory: 

$ sudo chmod 777 /lib/systemd/NeoCortecGateway 

When the file has been adapted to use for the local system, execute the following 

command from the command line: 

$ sudo systemctl enable NeoGW.service 

Reboot the Raspberry Pi and check that the service is running by using NetCat: 

$ nc localhost 2000 

 
4 In more concrete terms if you wish to use the code on a Raspberry Pi, skip over section 7.3. 
5 A Linux service is an application (or set of applications) that runs in the background waiting to be used, 

or carrying out essential tasks. 



 

 - 28 of 39 – 
 

 

neo.cortec.

This connects NetCat to the Outbound IP Socket of the NeoGateway, and directs the 

output of the gateway to the terminal. If the NeoGateway service is not running, NetCat 

will exit immediately. If the service is running, NetCat will not exit. 

Of course this only checks, if the Outbound socket is open. This test does not tell you 

anything about the connection to the NeoCortec module through the UART connection. 

For making sure all parts of the setup are working as intended, please proceed to section 

10.6 for a full test procedure. 

10.6 Testing connection to NeoCortec module 

In order to verify the Gateway software is installed correctly and the UART connection to 

the module is working, we need to send a node info request to the send socket (2001) 

and receive the correct reply from the Receive socket (2000). This test procedure tests 

the whole connection chain from socket to module and back. It does not matter whether 

you have used an evaluation board or a hardware extension board, as long as the setup 

steps for the correct configuration have been performed. For the test you have to have 

EITHER the Hardware interface board OR the evaluation board. The physical setup is as 

follows: 

 

You will need a second computer connected the Pi through an Ethernet cable. On the 

second computer you need Putty and Packet Sender installed. Make sure the NeoCortec 

gateway software is running on the Pi.6 The steps needed in order to verify the correct 

operation of the gateway setup are as follows: 

  

 
6 run the command “nc localhost 2000” from the RasPi’s command line. If the command does not return 

immediately, then the socket is open. 



 

 - 29 of 39 – 
 

 

neo.cortec.

1. Connect your RaspberryPi board with the NeoCortec module to the second 

computer through an Ethernet cable and make sure the RasPi gets power. 

2. Verify that the Gateway software is running on the Pi. 

3. Initiate a connection through PUTTY. Your setup should look like the image below. 

The default host name for your Raspberry Pi is “raspberypi” and the port to which 

you need to connect is “port 2000”. Make sure you set the connection type to “raw”, 

then hit open. 

 

 
  



 

 - 30 of 39 – 
 

 

neo.cortec.

 

4. After the connection is opened, start an instance of PacketSender and copy the 

following message into the ASCII textbox. Set the address to the IP of your 

Raspberry Pi and the port to “2001”.  

 

 

 

5. After you have hit send, you should see the request and the reply showing up in 

the bottom part of the packet sender window. 

 

 

 

6. If you have received a reply similar to the bottom line on the picture above, your 

setup works. If your reply looks like the image below, you do not have connection 

to the NeoCortec node, and you should check the gateway setup again. 

 



 

 - 31 of 39 – 
 

 

neo.cortec.

 



 

 - 32 of 39 – 
 

 

neo.cortec.

10.7 Interface Application DEMO 

 

Note: This part of the user guide is only instructional, and does not intend to present 
a full, end to end solution. The goal is to show how to interface with the NeoGateway 
software. 

 

The final step is to write an application which connects the NeoGateway to an application 

layer. In this example, we will connect the NeoGateway to a cloud service. We will be 

using Node-RED7 as the programming language which can easily be installed on a 

Raspberry Pi. 

The interface application will connect the NeoMesh with Microsoft Power BI 

(https://powerbi.microsoft.com/) . Strictly speaking Power BI is not a cloud platform, but 

a visualisation & analytics tool for various types of data, but it is easy to get started with, 

free to use and exemplifies well how to get data from the NeoGateway to a 3’rd party 

platform. 

The implementation assumes that the NeoMesh nodes are configured to send 

temperature and humidity data. For the required configuration steps, please refer to the 

Quickstart guide or to the user manual. 

10.7.1 Setting up Power BI 

If not already done, create an account at the Power BI website 

(https://powerbi.microsoft.com/) and sign in to the account. There are two steps which 

needs to be done; 1) Create a Streaming Dataset, 2) Create a Dashboard to view the 

data.  

  

 
7 https://nodered.org 



 

 - 33 of 39 – 
 

 

neo.cortec.

10.7.1.1 Create streaming dataset 

Click on the “My workspace” button then select to “skip” the prompted options. 

 

 

Expand the menu under the little “+Create” button, then click on “Streaming datasets” 

to get to the section where the dataset can be setup. 

 

 

  



 

 - 34 of 39 – 
 

 

neo.cortec.

In the pop-up menu on the right, select API as type. Give a name to the dataset, and add 

these values: 

 

 

Click create to get the API endpoint push URL. Save the URL for later use. 

  



 

 - 35 of 39 – 
 

 

neo.cortec.

10.7.1.2 Create Power BI Dashboard 

Expand menu on the right side under the “+ create” once again, and click the 

“Dashboard” option to add a new dashboard. Give it a name. Click “Add tile” to add a 

chart for the temperature data. Select “CUSTOM STREAMING DATA” and click Next. Now 

select the dataset created in the previous section and click next. Select “Line chart” as 

visualization type.  

Now click “Add value” under “Axis” and select Timestamp. Next click “Add value” under 

“Values” and select Temperature. Click Next, and then Apply. This will place a chart with 

the temperature data on the Dashboard. 

Repeat the steps above, selecting Humidity in the final step to add a chart for the Humidity 

data. See the NeoCortec User Guide Document for details on how to configure the 

NeoMesh nodes for this. 

10.7.2 Node-Red installation 

This section will walk through the Interface Application in Node-Red, step by step. First 

you need to install NodeRed on your Linux platform, as it might not come preinstalled. If 

you happen to have NodeRed installed, feel free to skip this step. For a detailed 

installation-and-run guide, read the official getting started page 

10.7.3 The code to interface with Power BI. 

In order to get our data to the cloud, we need to replicate the program below. 

 
Figure 1 - Node-Red Flow 

Take the nodes from the left, then drag and drop them to your “workbench”. For more 

detailed instructions, visit the official “create your first flow” page. 

In the following sections we will move from node to node from top left to bottom right. 



 

 - 36 of 39 – 
 

 

neo.cortec.

10.7.3.1 NeoGateway 

The first box is a TCP Input Node. It connects to the Outbound socket of the NeoGateway. 

It is configured like this: 

 

 
Figure 2 - TCP Input Node 

 

10.7.3.2 Create JSON object 

This node converts the received data from the NeoGateway into a true JSON object in 

Node-Red. No configuration is required. 

 



 

 - 37 of 39 – 
 

 

neo.cortec.

10.7.3.3 Check objectType 

This node looks at the “objectType” field of the JSON message, and filters out any other 

object types than “receviedPayload”. It is configured like this: 

 

 
Figure 3 - Filter for objectType 

 

Note: In a real implementation of an Interface Application, there shall be handlers for all 

object types, but in this case it is simplified to only handle receivedPayload. Make sure 

you do not mistype the filter criteria. 



 

 - 38 of 39 – 
 

 

neo.cortec.

10.7.3.4 Fetch Sensor Data 

This node is a Function Node, which contains Javascript Code which converts the raw 

JSON data to temperature and humidity data. It is configured like this: 

 

 
Figure 4 - Javascript code to convert raw data to sensor values 

 

More details on how the payload data is formatted can be found in the NeoCortec User 

Guide Document. 



 

 - 39 of 39 – 
 

 

neo.cortec.

10.7.3.5 Timestamp & Format 

This is a Function Node, which contains Javascript Code that timestamps the data and 

converts into a format expected by Power BI. It is configured like this: 

 

 
Figure 5 - Javascript code to timestamp & format data 

 

10.7.3.6 Send to Power BI 

This is a HTTP Request node which in this case connects to the API endpoint of Power BI 

streaming dataset created when setting up Power BI. It is configured like this: 

 

 
Figure 6 - HTTP POST to Power BI 

 

The actual URL shall be the one created when setting up the Power BI streaming 

dataset. 


